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The primary data were peck-by-peck sequential records of four pigeons responding on
several different concurrent variable-interval schedules. According to the hypothesis that
the subject chooses the alternative with the highest probability of reinforcement at the
moment, response-by-response performance in concurrent schedules should show sequential
dependencies. However, such dependencies were not found, and it was possible to describe
molecular-level performance with simple Markov chain models. The Markov model de-
scription implies that the momentary changeover probabilities were proportional to the
overall relative reinforcement frequencies, and that changeover probabilities did not
change as a function of previous responding. A second finding was that although a change-
over-delay procedure was omitted, relative response frequencies closely approximated
relative reinforcement frequencies.
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Descriptions of performance on concurrent
variable-interval variable-interval (conc VI VI)
schedules typically focus on the relationship
between the overall relative response rate and
the overall relative reinforcement rate (e.g.,
Herrnstein, 1970). This is called a molar-level
description (e.g., Shimp, 1975), and at this level
of analysis there is general agreement: the rela-
tive response rate approximates the relative re-
inforcement rate (for a recent review see de
Villiers, 1977). However, there is no similar
consensus about the relationship between in-
dividual response and reinforcement prob-
abilities in conc VI VI schedules. Shimp (1969),
Mackintosh (1974), and others (e.g., Silberberg
and Williams, 1974) have suggested that sub-
jects maximize the momentary reinforcement
probabilities and choose the alternative that
has the highest expected value at the moment.

'This report is based on a dissertation submitted to
the Department of Psychology and Social Relations,
Harvard University. Portions of the data were presented
at the annual American Psychology Association meet-
ing in Washington, D.C., September, 1976. Peter de
Villiers, Dick Herrnstein, A. W. Logue, Duncan Luce,
and Jim Mazur gave insightful and useful criticisms of
earlier versions of this manuscript, and I thank them
for their efforts. The research was supported by NIMH
grant MH 15494 to Harvard University. Reprints may
be obtained from Gene M. Heyman, Andrus Geron-
tology Center, University Park, University of Southern
California, Los Angeles, California 90007.

At a molecular level, maximizing of momen-
tary reinforcement probabilities results in se-
quential dependencies between responses; at a
molar level, this strategy is said (Shimp, 1969)
to produce matching between overall relative
response frequencies and overall relative rein-
forcement frequencies. In other words, the mo-
mentary maximizing theory states that match-
ing, a relationship between averaged measures,
is a secondary byproduct of a molecular-
level optimizing process. However, in two dis-
crete-trial choice procedure studies, (Herrn-
stein, 1971; Nevin, 1969; and see de Villiers,
1977), response sequences did not appear to fol-
low the pattern predicted by the momentary
maximizing hypothesis. In fact, some of the
data suggested that the probability of switch-
ing from one reinforcement alternative to the
other, a changeover, did not vary as a function
of previous responding. The apparent ab-
sence of sequential dependencies suggested that
a simple Markov chain model might fully de-
scribe molecular-level performance in conc VI
VI schedules.

In a conc VI VI schedule, reinforcement
probabilities change from moment to moment.
While the subject responds at one schedule,
the probability that a reinforcer is available
at the other schedule increases. The momen-
tary maximizing theory, therefore, predicts
that the probability of a switch from one
schedule to the other should increase as a
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function of the number of responses since the
last switch. Alternatively, a simple Markov
chain model predicts that the probability of
switching from a schedule will not vary as a
function of previous responding. The rela-
tionship between switching and previous re-
sponding is described in the study reported
here.

Figure 1 shows the two Markov models that
were tested. The upper-case letters identify
states: R corresponds to responding at one re-
inforcement schedule; G corresponds to re-
sponding at the other reinforcement schedule.
The lower-case letters stand for the transition
or changeover probabilities. The top diagram
represents a first-order Markov model (Bishop,
Fienberg, and Holland, 1975) of conc VI VI
performance. It indicates that the probability
of a changeover at each chance to switch, that
is, after a response on a schedule-associated
manipulandum, depends only on the schedule
to which the subject is currently responding.
The first-order model prediction, then, is that

the response-by-response changeover probabili-
ties are stationary; in other words, that the
changeover probabilities are constant and in-
dependent of the number of responses since the
last changeover. The bottom diagram repre-
sents a second-order Markov model of conc
VI VI performance. The terms R1 and G1
stand for the first postchangeover responses
(states). The terms R2+ and G2+ stand for all
subsequent postchangeover responses (states,
at the respective schedules, which start at the
second postchangeover response and continue
until the next changeover). Therefore, for the
second-order model, changeover probabilities
are stationary following the first postchange-
over response. Thus, according to the second-
order model, the probability of a changeover
depends on two factors: first, which of the two
reinforcement schedules the subject is respond-
ing to, and, second, whether the last response
was a changeover response. These are the two
simplest Markov models of concurrent per-
formance possible.

a

i-b2

1 -02

Fig. 1. The top diagram shows a first-order Markov process description of conc VI VI performance. The upper-
case letters indicate responding at the two reinforcement schedules: R for the schedule associated with the red
stimulus, G for the schedule associated with the green stimulus. The lower-case letters stand for the response prob-
abilities. The bottom diagram is a second-order Markov process description of conc VI VI performance. The
terms R1 and G1 stand for the first pos,changeover responses; R2. and G2+ stand for all subsequent postchangeover
responses. The lower-case letters stand for the response probabilities associated with each state.
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METHOD

Subjects
Four White Carneaux pigeons without pre-

vious experimental histories were maintained
at 80%,o of their free-feeding weights.

Apparatus
A standard chamber, 31.0 cm high, 33.0 cm

deep, and 29.5 cm wide, housed the experi-
ment. The response keys (Gerbrands) were 1.9
cm in diameter, 22.0 cm from the floor, and
14.5 cm apart. A force of more than 0.15 N
operated the keys, and each effective response
produced a brief feedback click and a brief
flicker of the illuminated response keys. The
opening of the grain hopper was 8.9 cm from
the floor, midway between the two keys. Mixed
grain was delivered for 2.5 sec with a standard
feeder (Gerbrands), which was illuminated by
two 7-W lamps during reinforcement. The ex-

perimental chamber was enclosed in a sound-
attenuating box and lit by two 28-V dc lamps.
White noise masked extraneous sounds, and a

computer (Digital Equipment Corporation
PDP-9T) controlled the presentation of stimuli
and recording of experimental events.

Procedure
Reinforcers were scheduled by a changeover-

key conc VI VI procedure (Findley, 1958). The
right key, designated the main key, was associ-
ated with both VI schedules; the left key, desig-
nated the changeover key, controlled which of
the two schedules was available at the main
key. The main key was illuminated red for
one VI schedule and green for the other, and
pecks on this key intermittently produced
grain. The changeover key was illuminated
white. A single peck on the changeover key al-
ternated the color of the main key and the
available VI schedule. Although only one

schedule at a time was available, both ran

concurrently.
Reinforcers were scheduled so that their rela-

tive rate was constant (Stubbs and Pliskoff,
1969). First, a single VI 30-sec schedule deter-
mined when a reinforcer was available. The in-
tervals, based on the list provided by Fleshler
and Hoffman (1962), gave an approximately
exponential distribution of scheduled interre-
inforcement times. Second, when an interval
timed out, a binary digit drawn at random
determined whether the reinforcer was as-

signed to the red or green stimulus. For ex-
ample, if the probabilities of assigning a rein-
forcer were 0.75 and 0.25 for the two stimuli,
the scheduled interreinforcement intervals
were 40 sec and 120 sec respectively.
There was, however, one important change

from the standard concurrent procedure. To
simplify interpretation, a changeover-delay
procedure was not used. That is, the first main-
key response following a changeover-key re-
sponse could be reinforced independently of
time. Successive pecks at the changeover key,
however, had no effect, so that a changeover-
key response was necessarily preceded by a
main-key response.

Before exposure to the concurrent schedules,
the birds were trained to peck the response
keys according to an autoshaping procedure
(Brown and Jenkins, 1968). Each bird was then
exposed to three different concurrent sched-
ules: conc VI 40-sec VI 120-sec, conc VI 60-sec
VI 60-sec, and conc VI 300-sec VI 33.3-sec (see
Table 1). Each schedule pair was maintained
until both the relative response rate and the
overall average probability of a changeover
(the ratio of total changeovers to total re-
sponses) did not show a trend for five sessions
(an extreme value). Changeover probability
has not been considered a criterion for stability
by other researchers, but if this measure were
not stable, then the response-by-response (mo-
lecular) changeover probabilities could not be
stable.

Sessions were terminated after 60 reinforcers
or 40 min. The experiment was conducted six
days a week.

RESULTS

Molar Measures
Table 1 summarizes the overall performance

measures, based on data averaged from the last
five sessions of each condition. Columns list
the following information: number of sessions
in each condition, response rates for the red
and green stimuli, time spent responding at
the red and green stimuli, exclusive of rein-
forcement time, changeover rates, and rein-
forcement rates for the two stimuli.

Figure 2 shows relative response frequency
(left panels) and relative time (right panels)
as a function of relative reinforcement rate
for the schedules associated with the red stimu-
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Fig. 2. Relative response rate (left) and relative time (right) plotted as a function of relative reinforcement rate.
The data were pooled from the last five sessions of each condition.
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Table 1
Summary of the results, based on data averaged from the last five sessions of each condition.
Standard deviations are enclosed in parentheses.

Obtained
Variable Rein-
Intervals forcements

Subject (sec) Session Pecks perMinute Time (mm) Changeovers perHour
Number Red Green Number Red Green Red Green per Minute Red Green

165 40.0 120.0 75-117 21.04 (3.03) 9.40 (2.65) 24.08 (4.78) 12.85 (3.77) 7.69 (2.17) 64.98 25.99
300.0 33.3 1-32 4.86 (1.00) 74.46 (1.76) 4.92 (1.35) 29.22 (2.97) 4.60 (0.53) 10.55 93.15
60.0 60.0 33-74 13.38 (1.40) 13.47 (1.81) 17.23 (1.12) 17.07 (0.95) 17.11 (2.04) 54.23 50.73

209 120.0 40.0 1-40 18.06 (1.05) 54.06 (2.22) 10.12 (0.95) 21.38 (0.32) 18.06 (1.87) 26.67 87.62
33.3 300.0 41-85 72.42 (5.27) 12.64 (2.08) 27.12 (1.07) 4.60 (0.55) 7.35 (0.66) 102.15 11.35
60.0 60.0 86-165 42.13 (3.74) 42.07 (4.01) 15.22 (0.88) 15.73 (0.68) 23.17 (1.71) 56.22 58.16

241 40.0 120.0 73-132 58.31 (2.48) 18.24 (2.19) 20.70 (0.53) 10.77 (0.57) 22.72 (0.64) 87.70 26.69
300.0 33.3 44-72 6.70 (1.02) 59.26 (3.90) 5.27 (0.72) 26.23 (0.97) 11.11 (0.79) 13.33 100.94
60.0 60.0 1-43 24.83 (1.79) 24.52 (1.79) 15.85 (0.45) 15.97 (0.20) 28.41 (2.01) 58.46 54.69

205 40.0 120.0 1-38 33.63 (3.22) 15.74 (0.92) 19.72 (0.53) 11.98 (0.38) 22.30 (0.95) 87.07 24.50
33.3 300.0 39-97 60.00 (3.46) 6.66 (0.72) 26.18 (1.43) 5.93 (0.58) 8.50 (0.78) 100.88 11.21
60.0 60.0 98-130 28.26 (2.35) 31.14 (1.49) 15.30 (0.45) 16.23 (0.20) 35.87 (2.73) 57.08 57.08

lus. Despite the absence of a changeover delay,
relative pecks closely matched relative rein-
forcement rate. The largest difference between
the two relative measures was 9%, and the
slope of the best-fitting line (least squares) for

the group relative peck frequencies was 0.95.
Relative time did not fit the diagonal indicat-
ing perfect matching as closely. The largest
deviation was 15%, and the slope of the best-
fitting line for the group time data was 0.77.
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Fig. 3. The probability of a changeover-key response as a function of the number of responses since the last

changeover (run length). The data are from the last session of the VI 40-sec VI 120-sec condition. The horizontal
lines indicate the changeover probabilities predicted by the Markov models. When the first-order model provided
the best fit, the horizontal line starts at the first postchangeover response; when the second-order model provided
the best fit, the horizontal line starts at the second postchangeover response. The broken horizontal lines indicate
the first- and second-order model predictions when it was not possible to fit either of the two models to the data.
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Molecular Measures
Figures 3, 4, and 5 show the conditional

probability of a changeover-key response as a
function of the number of responses since the
last changeover (run length). The open circles
indicate changeover probabilities from the
schedule with the lower reinforcement rate;

I'J

filled circles indicate these probabilities for the
schedule with the higher reinforcement rate.
For the conc VI 60-sec VI 60-sec schedule, the
filled circles show the probabilities for the
schedule associated with the red stimulus. The
data are from a single session, the last one in
each condition.
The conditional changeover response proba-
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Fig. 4. The probability of a changeover-key response as a function of the number of responses since the last
changeover (run length). The data are from the last session of the VI 33.3-sec VI 300-sec condition. The horizon-
tal lines indicate the Markov model predictions. See Figure 3 and text for further discussion of the Markov model
predictions.
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bilities were calculated from the number of
opportunities to changeover at each run
length. For example, the number of oppor-
tunities to switch after a run of two main-key
responses is the number of runs that are two
pecks long and longer. Of necessity, the num-
ber of opportunities to switch must decrease as
run length increases. When the number of op-
portunities to switch at a run length was less
than 10, the remaining run lengths were
grouped, and the probability of a changeover-
key response was calculated from these data.
This probability is shown with the longest
run length.
As noted above, the momentary maximizing

hypothesis leads to the prediction that change-
over probabilities in Figures 3, 4, and 5 should
increase as a function of run length. However,
a Kendall nonparametric trend test (Ferguson,
1965) showed that changeover probabilities did
not monotonically increase (or decrease) as run
length increased. The molecular level events
predicted by the momentary maximizing hy-
pothesis, then, did not appear to occur.
The Markov account shown in Figure 1 re-

quires stationary changeover probabilities
from the first or second postchangeover re-
sponse. A goodness-of-fit test (chi-square) was
used to test for stationarity.
To test the first-order Markov model, it is

necessary to determine if the individual, re-
sponse-by-response changeover probabilities
generally approximated their average (which
is simply the ratio of the number of change-
overs from a schedule to the number of re-
sponses on the schedule). To fit the second-
order Markov model, it is necessary to show
that, starting from the second postchangeover
response, the individual, response-by-response
changeover probabilities generally approxi-
mated their average.
Cochran (1954) proposed a simple way to

strengthen the chi-square test for goodness of
fit. Set the criterion for collapsing adjacent
classes at an expected frequency of less than
one, rather than at the customary less than five.
This rule increases the likelihood of rejecting
the Markov models, and for this reason it
was adopted. However, it turned out that,
except for longer runs on the VI 33.3-sec sched-
ule, the expected changeover frequencies were
almost always greater than five.
Table 2 lists the results of the chi-square

analyses. The Markov models were accepted

at p > 0.05 (Bishop et al., 1975). By this cri-
terion, the first-order model described the re-
sponse-by-response behavior in 16 of 24 tests,
and the second-order model described the per-
formance in 20 of 23 tests. (For Pigeon 241 on
the VI 300-sec schedule there were not enough
degrees of freedom to test the second-order
Markov model). In general, then, the response-
by-response probabilities of switching from a
schedule were constant and independent of the
number of previous responses since the last
switch.
The straight lines in Figures 3, 4, and 5

show the changeover probabilities predicted
by the Markov models. The lines that start at
the first postchangeover response indicate the
average probability of switching from a sched-
ule, which is the first-order model prediction;
the lines that start at the second postchange-
over response indicate the average probability
of switching for runs of two and longer, which
is the second-order model prediction. The post-
changeover response at which the lines start
tells whether the first- or second-order model
provided the best fit (higher value of p). The
broken lines show the predicted changeover
probabilities for the three sets of data that the
Markov models did not fit (p < 0.05). For
these data, both the first- and second-order
model predictions are displayed.
Changeover probabilities showed a cyclic

pattern in the sessions in which they were not
stationary. For example, the probabilities of
switching at even-numbered run lengths were
always greater than the probabilities at the
two adjacent, odd-numbered run lengths for
Pigeon 209 on the conc VI 60-sec VI 60-sec
schedule. (A similar pattern is shown by Pi-
geon 241 on the VI 40-sec schedule.) Odd-even
cycles suggest two peck "bursts", a character-
istic of pigeons that has been reported else-
where (e.g., Blough, 1966).

DISCUSSION
The primary finding was that simple first-

and second-order Markov models described the
response-by-response performance of four pi-
geons on several conc VI VI schedules. This
result means that the observed molecular re-
sponse structure was not controlled by the
molecular reinforcement contingencies, that
matching was not a secondary byproduct of a
molecular level maximizing strategy, and that
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Table 2
Summary of the chi-square test results. The data are from the last session of each condi-
tion. First-order is for the test that included the first postchangeover response. Second-
order is for the test that excluded the first postchangeover response. The degrees of
freedom correspond to two less than the longest run on the schedule, except in those
instances in which adjacent dasses (run lengths) were collapsed. One degree of freedom
was lost because the expected changeover probability, the average, was estimated from
the data and one degree was lost for the last class. The p values give an estimate of the
probability of the chi-square sum, and the higher the p the smaller the difference between
the individual changeover probabilities and the average (predicted) changeover probability.
The third column shows the session relative response frequency.

Variable Per Cent
Subject Intervals Pecks to Markov Chi-
Number (sec) Red Order D.F. Square p

241 40.0 77.5% 1 12 134.08 <0.01

120.0

33.3

300.0

60.0 (Red)

9%

52.2%

60.0 (Green)

205 40.0 70%

120.0

33.3 88.6%

300.0

60.0 (Red)

60.0 (Green)

40.0165

46.3%

72.7%

120.0

33.3 6.5%

300.0

60.0 (Red) 50.9%

60.0 (Green)

209 40.0 24%

120.0

33.3 86%

300.0

60.0 (Red)

60.0 (Green)

46.8%

2
1
2
1
2

2

2

1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
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11
2
1

26
25

1

2
1
2
1
8
7
2
1

27
26
2
1
3
2
4
3
11
10
3
2
38
37
2
1
3
2
2
1

18
17
3
2

41
40
7
6
7
6
7
6

45.91
2.16
0.002
30.64
29.04
0.18

60.75
1.37

24.38
0.12

27.65
9.70
0.78
0.15
38.58
27.49
3.33
1.26
0.46
0.11
3.38
0.40
16.22
3.08
6.25
0.93
50.41
50.47
16.85
0.29
0.92
0.87
0.60
0.57

25.40
11.75
13.30
2.01

52.50
51.59
10.95
2.68

136.0
21.30
115.21
31.78

<0.01
>0.30
>0.95
>0.20
>0.20
>0.50

<0.01
>0.20
<0.01
>0.70
<0.01
>0.20
>0.50
>0.50
>0.05
>0.30
>0.10
>0.20
>0.90
>0.90
>0.30
>0.90
>0.10
>0.95
>0.10
>0.50
>0.05
>0.05
<0.01
>0.50
>0.80
>0.50
>0.70
>0.30
>0.10
>0.80
<0.01
>0.30
>0.10
>0.10
>0.05
>0.80
<0.01
<0.01
<0.01
<0.01
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independent of run length, changeover proba-
bilities were proportional to the overall rela-
tive frequencies of reinforcement.

For a Markov process, the transition proba-
bilities between states are proportional to the
relative frequency of time (or the number of
trials) the states are occupied. Therefore, since
the Markov models fit the data, the proba-
bility of a switch to a schedule, independently
of run length, must have been proportional to
the relative frequency of responding at the
schedule. And, because the relative frequency
of responding approximated the relative fre-
quency of reinforcement (Figure 2), the proba-
bility of switching to a schedule at any run

length mu-,t also have been approximately pro-
portional to the overall relative frequency of
reinforcement obtained there. These interre-
lationships can be shown explicitly by the fol-
lowing mathematical relations inherent to
conc VI VI schedules and Markov processes.

In a conc VI VI schedule, the average prob-
ability of switching to a reinforcement alterna-
tive is directly proportional to the relative fre-
quency of responding at that alternative:

C( BIB2 2 B2

B, kBjC2 + B2C1J B1 + B2
and

C2 BIB2 \- B , 1

B2 BC2 + B2C1 B1+ B2' ()

where Bi is the total number of responses at
alternative i, Ci is the total number of change-
overs from alternative i, and since the number
of changeovers from the two schedules cannot
differ by more than one, it is assumed that
C1 = C2. The first quotient in each expression is
the average probability of switching from alter-
native i. The second quotient is the constant of
proportionality that links the average change-
over probabilities to the relative response fre-
quencies. Its magnitude is equal to one-half
the harmonic mean of the interchangeover
times (Heyman, 1977), so that it scales the over-
all tendency to switch. Since the chi-square
analyses showed in general that the response-
by-response changeover probabilities did not
differ from their overall average, the proba-
bility of switching at any run length can be
substituted for the overall average probability
of switching in Equation 1. Figure 2 shows that
relative response frequency approximated rela-
tive reinforcement frequency. Therefore, rela-

tive reinforcement frequency can be substi-
tuted for relative response frequency in
Equation 1. These substitutions result in the
corresponding approximations:

p(xjb1, n)BC2 + B2C) RI + R2
and

p(xIb2 n)(BIC2+ B2C1J R, + R2'

where bi, n is a main-key postchangeover re-
sponse of run length n, x is a changeover re-
sponse, and RI is the total number of reinforce-
ments at alternative i. The two equations show
that independent of run length, the proba-
bility of a changeover to a schedule was ap-
proximately proportional to the relative rein-
forcement frequency provided by the schedule.
Whenever the first-order model fits, the ap-
proximations hold for all run lengths (n = 1,
2, . . . n). Whenever the second-order model fits
but the first does not, the approximations hold
for runs of two and longer (n = 2, 3, . . . n).
When the first-order Markov model did not

describe the data, factors other than relative
reinforcement frequency must have influenced
switching. Figures 3, 4, and 5 suggest what
these factors might be. First, for sessions in
which a second-order model fit, but a first did
not, the probability of a changeover at a run
length of one was typically lower than the
probability of a changeover for longer runs.
This difference may have been due to the topo-
graphical asymmetry between first and later
postchangeover responses. The first post-
changeover response followed a response at the
changeover key, which was 14.5 cm from the
main key; subsequent postchangeover re-
sponses simply followed one another at the
main key. The probability of switching at a
run length of one, then, may have been re-
duced because it followed a more effortful
response. Second, the cyclic, odd-even change-
over probability fluctuations produced devia-
tions from the first-order model. Two-peck re-
sponse units would explain this pattern, and it
has been suggested (Blough, 1966) that pigeons
may have an innate tendency to "double
peck". In any event, neither of these depar-
tures from the first-order Markov model sug-
gests the influence of changes in molecular-
level reinforcement probabilities.
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There is some evidence that stationary
changeover probabilities are a general charac-
teristic of conc VI VI responding when a
changeover delay is not employed, and in pro-
cedures that use a changeover delay, there is
indirect evidence that switching probabilities
are approximately stationary once the delay
has elapsed.

Herrnstein (1971) recorded changeover prob-
abilities as a function of run length in a dis-
crete-trial version of a conc VI VI schedule
(the data are displayed in de Villiers, 1977).
A changeover delay was not used, and by in-
spection the changeover probabilities appear
stationary. Of additional significance is that
Herrnstein arranged reinforcers with two in-
dependent timers, rather than with the single
timer (Stubbs and Pliskoff, 1969) procedure
used here. The similarity of outcomes suggests
that the molecular structure of performance in
the two types of conc VI VI procedures is the
same despite differences in the molecular rein-
forcement contingencies and differences in the
relationship between overall responding and
overall reinforcement rate (Heyman, 1977).

In procedures that use a changeover delay,
switching probabilities cannot be strictly sta-
tionary. That is, a first-order Markov model
would not apply, because subjects appear to
learn not to switch during the delay interval
(Baum and Rachlin, 1969). However, the re-
lationship between absolute changeover rate
and relative response frequencies in conc VI
VI performance suggests that postdelay change-
over probabilities are approximately station-
ary, and postdelay responding takes up the
bulk of the session. Absolute changeover rate
decreases as relative response frequency di-
verges from 0.5 (e.g., Baum, 1973; Herrnstein,
1961). For a Markov process, the function re-
lating switching to preference is obtained by
considering a series of first-order models in
which the transition probabilities, a and b in
Figure 1, differ from model to model but add
to a constant. For example, if a plus b sum to
one, the first-order model is equivalent to a
Bernoulli trials process, and the expected prob-
ability of a switch at each trial is 2p(I-p).
When 2p(l-p) is graphed as a function of p
(see Mosteller, Rourke, and Thomas, 1970, p.
213), which is analogous to the common prac-
tice of showing changeover rate as a function
of, say, relative peck frequencies, the slope
is negatively accelerated with a maximum at

p = '/2. Similarly in conc VI VI performance,
changeover rate shows a negatively accelerated
increase as relative response frequency ap-
proaches 0.5. Moreover, the negatively accel-
erated changeover function appears to be a
general characteristic of conc VI VI respond-
ing: it is obtained with different species, for
example humans (Baum, 1975), rats (Baum,
1973), and pigeons (Stubbs and Pliskoff, 1969),
it is obtained in procedures that arrange rein-
forcers with a single timer (Stubbs and Pliskoff,
1969) or two independent timers (Herrnstein,
1961); and it is obtained independently of a
changeover delay (changeover functions cal-
culated from Table 1 show a negatively ac-
celerated slope and a maximum at about p =
0.5). In other words, a basic feature of conc VI
VI performance can be derived from the as-
sumption that changeover probabilities are
generally stationary.
The molar results of this study are also of

some theoretical interest because it is widely
believed that matching depends on the use of
a changeover delay (e.g., Mackintosh, 1974;
Shimp, 1975). Figure 2, however, shows re-
sponse matching well within the range ob-
tained in studies using a changeover delay (de
Villiers, 1977). Additionally, several other stud-
ies have omitted a changeover delay yet ob-
tained acceptable matching (Baum, 1974;
Bradshaw, Szabadi, and Bevan, 1976; Findley,
1958; Stubbs and Pliskoff, 1969); reviews have
ignored these results.

Since the probability of reinforcement at the
unattended schedule increases as a function of
run length, it is, perhaps, surprising that the
changeover probabilities were, in general, sta-
tionary. However, consider the view that the
overall distribution of reinforcements directly
determines the overall distribution of behavior
(de Villiers and Herrnstein, 1976). This ac-
count of conc VI VI performance is strongly
supported by the finding that independent of
run length, the response-by-response change-
over probabilities were proportional to the
overall relative frequencies of reinforcement
(Equation 2). Moreover, the results that could
not be described by a first-order Markov model
do not appear to contradict the molar account,
since fluctuations in changeover probabilities
were apparently due to factors dissociated from
the schedules; for example, a tendency for pi-
geons to peck in bursts. In sum, the simple
orderliness of molecular-level responding
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makes it possible to describe fully the sequen-
tial history of about 35 min of responding,
typically about 2400 responses, with models
that entailed at most four parameters, and, as
is true of molar-level concurrent responding,
molecular-level behavior showed a simple sym-
metry with the overall relative reinforcement
frequencies.
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